Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)While convolutional neural networks have firmly established themselves as the superior steganography detectors, little human-interpretable feedback to the steganographer as to how the network reaches its decision has so far been obtained from trained models. The folklore has it that, unlike rich models, which rely on global statistics, CNNs can leverage spatially localized signals. In this paper, we adapt existing attribution tools, such as Integrated Gradients and Last Activation Maps, to show that CNNs can indeed find overwhelming evidence for steganography from a few highly localized embedding artifacts. We look at the nature of these artifacts via case studies of both modern content-adaptive and older steganographic algorithms. The main culprit is linked to “content creating changes” when the magnitude of a DCT coefficient is increased (Jsteg, –F5), which can be especially detectable for high frequency DCT modes that were originally zeros (J-MiPOD). In contrast, J- UNIWARD introduces the smallest number of locally detectable embedding artifacts among all tested algorithms. Moreover, we find examples of inhibition that facilitate distinguishing between the selection channels of stego algorithms in a multi-class detector. The authors believe that identifying and characterizing local embedding artifacts provides useful feedback for future design of steganographic schemes.more » « less
-
null (Ed.)Deep Convolutional Neural Networks (CNNs) have performed remarkably well in JPEG steganalysis. However, they heavily rely on large datasets to avoid overfitting. Data augmentation is a popular technique to inflate the datasets available without collecting new images. For JPEG steganalysis, the augmentations predominantly used by researchers are limited to rotations and flips (D4 augmentations). This is due to the fact that the stego signal is erased by most augmentations used in computer vision. In this paper, we systematically survey a large number of other augmentation techniques and assess their benefit in JPEG steganalysismore » « less
-
null (Ed.)In this paper, we investigate the effect of pretraining CNNs on Ima- geNet on their performance when refined for steganalysis of digital images. In many cases, it seems that just ’seeing’ a large number of images helps with the convergence of the network during the refinement no matter what the pretraining task is. To achieve the best performance, the pretraining task should be related to steganal- ysis, even if it is done on a completely mismatched cover and stego datasets. Furthermore, the pretraining does not need to be carried out for very long and can be done with limited computational re- sources. An additional advantage of the pretraining is that it is done on color images and can later be applied for steganalysis of color and grayscale images while still having on-par or better perfor- mance than detectors trained specifically for a given source. The refining process is also much faster than training the network from scratch. The most surprising part of the paper is that networks pretrained on JPEG images are a good starting point for spatial domain steganalysis as well.more » « less
-
null (Ed.)In this paper, we study the EfficientNet family pre-trained on ImageNet when used for steganalysis using transfer learning. We show that certain “surgical modifications” aimed at maintaining the input resolution in EfficientNet architectures significantly boost their performance in JPEG steganalysis, establishing thus new benchmarks. The modified models are evaluated by their detection accuracy, the number of parameters, the memory consumption, and the total floating point operations (FLOPs) on the ALASKA II dataset. We also show that, surprisingly, EfficientNets in their “vanilla form” do not perform as well as the SRNet in BOSSbase+BOWS2. This is because, unlike ALASKA II images, BOSSbase+BOWS2 contains aggressively subsampled images with more complex content. The surgical modifications in EfficientNet remedy this underperformance as well.more » « less
An official website of the United States government

Full Text Available